
EZSTORAGE - 1

UCRL-WEB-200719

EZSTORAGE

EZSTORAGE - 2

Table of Contents

Preface 3
Introduction 4
Overview 5

Storage Summary 6
STORAGE Interfaces 7

FTP: General File Transfers 7
NFT: Locally Enhanced Transfers 7
HSI: Enhanced or Concurrent File Transfer Sessions 8
Additional Interfaces 8

Accessing STORAGE 10
Copies in Storage 11

Using FTP 12
Basic FTP Commands 12
FTP Example 14
FTP Pitfalls (with Storage) 16

Using NFT 18
NFT Command Syntax 18
NFT Commands by Task 19
NFT Example 20

Using HSI 21
HSI Command Line 21
HSI FTP Compatibility 21
HSI Examples 23
Additional Resources 23

Sharing Stored Files 24
Using Storage Groups 24
Setting Stored-File Permissions by Group 25
Reading Shared Stored Files 26

Storage Assistance Tools 27
LSTORAGE (List Stored Files) 28
CHMODSTG (Change Storage Permissions) 30
CHGRPSTG (Change Storage Groups) 33
HTAR (Manage Stored File Collections) 36

Disclaimer 38
Keyword Index 39
Alphabetical List of Keywords 40
Date and Revisions 41

EZSTORAGE - 3

Preface

Scope: EZSTORAGE explains how to transfer files between machines where you
work (mostly LC production machines) and LLNL's High Performance Storage
System (or STORAGE, LC's central file-storage archive). Transferring files using
FTP and NFT as well as connecting to STORAGE from various locations is
discussed. EZSTORAGE also tells how to overcome the most common problems
encountered when storing and retrieving your files, including sharing stored files.
Three customized (LC-only) storage-assistance tools to manage and monitor the
groups and permissions of your stored files are also introduced (LSTORAGE,
CHMODSTG, and CHGRPSTG), along with a fourth local tool (HTAR) that
supports the fast, efficient storage of very large archive (TAR-like library) files.

Availability: When the programs described here are limited by machine, those limits are
included in their explanation. Otherwise, they run under all LC systems.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531
(open e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at

 OCF: https://computing.llnl.gov/LCdocs/ezstorage/ezstorage.pdf
 SCF: http://www.llnl.gov/LCdocs/ezstorage/ezstorage_scf.pdf

http://www.llnl.gov/LCdocs/ezstorage/ezstorage_scf.pdf

EZSTORAGE - 4

Introduction

This manual provides a basic guide to effectively storing and archiving files from LC computers by
using the High Performance Storage System (HPSS), also referred to herein as STORAGE. Its goal is
to introduce relevant background information, describe storage interface options, and give an overview
of the basic commands used for storage. The HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss)
provides a detailed discussion of the STORAGE system and its specialized features.

EZSTORAGE first provides an overview (page 5) of the strengths and weaknesses of
LC's storage system, including the software interfaces (page 7) compatible with STORAGE,
a summary of STORAGE commands (page 6), and accessing STORAGE (page 10) from
various locations. The second section explains how to save files using File Transfer Protocol (page
12)(FTP). The third section explains how to save files using Network File Transfer (page 18)
(NFT). The next section answers the common but unfortunately complex question of how to share
stored files (page 24). Finally, a concluding section introduces three special storage-assistance (page
27) software tools to simplify managing your stored files, along with another local tool (HTAR
(page 36)) that efficiently stores large archive (library) files or retrieves members from within them
even while the archive itself remains stored.

Reference manuals are available to provide detailed technical instructions on the tools and
techniques introduced in EZSTORAGE, including manuals on FTP (URL: http://www.llnl.gov/LCdocs/
ftp), NFT (URL: http://www.llnl.gov/LCdocs/nft), HPSS (URL: http://www.llnl.gov/LCdocs/hpss),
HTAR (URL: http://www.llnl.gov/LCdocs/htar), and the local Firewall (URL: http://www.llnl.gov/
LCdocs/firewall). Additionally, the document EZFILES (URL: http://www.llnl.gov/LCdocs/ezfiles) is
a basic guide for using local directories and for general file-handling software at LC. (Because "secure
FTP," called SFTP, relies on a different server than standard FTP, you can not use SFTP to store files or
retrieve stored files at LLNL.)

The Hierarchical Storage Interface (HSI) communicates with HPSS with a user-friendly interface
that makes it easy to transfer files and manipulate files and directories using familiar UNIX-style
commands. HSI supports recursion for most commands as well as CSH-style support for wildcard
patterns and interactive command line and history mechanisms, among its many other features. For more
information, see the HSI User Manual (URL: http://www.llnl.gov/LCdocs/hsi).

http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/htar
http://www.llnl.gov/LCdocs/firewall
http://www.llnl.gov/LCdocs/ezfiles
http://www.llnl.gov/LCdocs/hsi

EZSTORAGE - 5

Overview

Reliable, massive, archival data storage is a crucial part of any effective high-performance
computing environment. The good news is that LC has such storage (officially called the High
Performance Storage System, HPSS). The bad news is that layers of historically complex, asymmetric,
security-driven interface features can make using storage easy in some circumstances but almost
impossible in others.

Although the actual disk and tape resources for storing files at LC are large and elaborate, the user
interface is constrained to use the FTP daemons exclusively. This means that all your interactions
with storage occur through FTP clients (or local alternatives to FTP clients, such as NFT, parallel FTP
(PFTP), or HTAR). FTP is standardized and easy to learn, but for many typical storage tasks it is inept
or profoundly inelegant (the file-sharing (page 24) section below provides an extended example).
Because SFTP talks to a different, non-FTP daemon, you cannot store or retrieve files using SFTP.

Moving files to/from LC production machines, open or secure, is a mainstream storage mission, easy
to perform and very reliable. Using file storage in this context avoids quotas on user home directories,
avoids purges of files on temporary work disks, and provides virtually unlimited capacity for managing
data or computational output. Transfer rates are fast, and FTP connections are very reliable. Customized
FTP-daemon interfaces to handle special storage needs (such as NFT for persistent storage transfers or
HTAR for very efficiently making large archives directly in storage) are available here, too.

Moving files to/from other LLNL machines is more complex. Features of special FTP clients,
together with the need to protect unusual file formats during transfer to or from storage, may call for
taking extra steps.

Finally, moving files to/from non-LLNL.GOV machines, such as computers at other sites or the
workstations of distant ASC collaborators, is the most complicated of the three situations. It requires
either using a two-stage process or running extra enabling software (such as VPN). This may involve
running FTP twice, or using nonFTP transfers to an LC production machine before actually storing the
files with FTP (run on an LC machine). The details, suggested in a later section (page 10), call for
entire separate manuals to explain thoroughly, and nevertheless often change to reflect unsettled security
goals.

EZSTORAGE - 6

Storage Summary
This section briefly summarizes the chief storage-system constraints and tells how to perform the

most important file-storage tasks at LC. We suggest you save it for ready reference.
Storage System Constraints:

Largest allowed file size: 10 Tbyte (using FTP/NFT interface)
 68 Gbyte/member | (using HTAR
 10 Tbyte/archive | interface)
Longest file name: 1023 characters
 (With HTAR, longest entry name or soft link is 100 characters)
Problem characters in file names:
 Treated as file filters: ? * {a,b}
 Forbidden FIRST characters: # - | ~
 Forbidden in any position: * ? [{

Commands for Common File-Storage Tasks:

TASK: FTP NFT
Connect to storage: ftp storage nft
Make storage directory: mkdir dr (same)
Change storage directories: cd dr (same)
Store a file: put fl (same)
Retrieve a stored file: get fl (same)
Retrieve from within a stored archive: See HTAR See HTAR
Delete a stored file: delete fl (same)
List stored files: dir (same)
Change permissions (to nnn): quote site chmod nnn fl chmod nnn fl
Change "class of service" (COS): site setcos nnn setcos nnn
Start migration of stored file from tape: quote site stage fl (none)
Control file overwriting:
 Prevent overwriting (none) noclobber
.....Allow overwriting (default) clobber
Can be run visually by
using HOPPER:

yes yes

See the section below (page 27) on additional, customized software tools available on LC
production machines (tools such as LSTORAGE, CHMODSTG, CHGRPSTG, and HTAR) for handling
special interactions with your stored files.

Storage Home Directories:
Regardless of their access software (FTP, NFT), LC users arrive at HPSS in their storage home
directory. This always has a pathname of the form

 /users/u[00-54]/username

where username is your LC login name (for example: /users/u34/jsmith). This basic directory structure
supports customized division into subdirectories (for example, by invoking FTP's or NFT's MKDIR
command) as well as access control of stored files by using storage groups (page 24).

EZSTORAGE - 7

STORAGE Interfaces

FTP: General File Transfers

FTP clients and (server) daemons are available on all LC production and special-purpose machines
in both the open and secure environments. FTP is the standard interface to the LC archival file storage
system (both open and secure). When you run FTP (on an OTP or Kerberos-passworded LC machine)
with STORAGE as the target host, access is "preauthenticated" and you are NOT prompted for your
password. Also, on all LC production machines (but not necessarily on other LC machines), a parallel
FTP client (equivalent to PFTP) is now the default. All files that are 4 MBytes or larger automatically
move to or from storage using parallel FTP.

A concise summary of how to use FTP commands and features to store files, with annotated
examples, is found in the Using FTP (page 12) section of this document (along with a subsection on
known pitfalls). For a detailed discussion of the user commands, software responses, and error codes for
the FTP file-transfer utility consult the FTP Reference Manual. (URL: http://www.llnl.gov/LCdocs/ftp)

WARNING: Not all available FTP clients interact equally well with HPSS. If you work on LC
Linux/CHAOS clusters, you have access to /usr/kerberos/bin/ftp, but you should always instead run /usr/
bin/ftp to store files. Under some circumstances the former (but not the latter) client refuses to log you
into HPSS or needlessly asks you to "please login with USER and PASS."

NFT: Locally Enhanced Transfers

NFT is available on all LC production machines (open and secure, but not on some special-purpose
hosts) and is a locally developed file transfer tool. Although NFT uses standard FTP daemons to carry
out its file transfers, it offers such enhanced features as:

• A special NFT server that preauthenticates all NFT transfers, so all NFT executions are
passwordless.

• NFT elaborately tracks and numbers all transfers. It automatically persists if system problems
delay storing any file, and it keeps detailed records of your file-storage successes and problems.

• Input from and output to files is easy, and NFT's command syntax (unlike FTP's) lends itself to
practical use in scripts and batch jobs.

• Some NFT commands especially facilitate transfers to and from STORAGE (so some users regard
NFT as primarily a file-storage rather than a general file-transfer tool). Also, NFT automatically
"routes" storage-related file transfers to take advantage of fast, jumbo-frame network connections
whenever they are available (especially helpful for transfers between the Lustre parallel file
system and storage).

A concise, task-oriented summary of how to use NFT commands and features, with annotated
typical examples is found in the Using NFT (page 18) section of this document. For a complete
analysis of NFT syntax and special features, along with a thorough alphabetical command dictionary,
consult the NFT Reference Manual (URL: http://www.llnl.gov/LCdocs/nft).

http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/nft

EZSTORAGE - 8

HSI: Enhanced or Concurrent File Transfer Sessions

HSI provides a UNIX shell-style interface to HPSS. Directories and files can be listed using the "ls"
command, and traversing directories can be accomplished with the "cd" command.

When HSI is launched, it performs the following actions:

• Parses command line options.

• Reads startup files (the user's $HOME/.hsirc, and the system-wide hsirc file that is optionally
installed by the system administrator), if they exist. In general, most settings that are defined in the
system-wide hsirc file can be overridden by the user's private .hsirc file.

• Authenticates using one of the mechanisms that were enabled when the application was compiled,
such as kerberos or a username/password combination.

If your file-transfer needs specifically involve placing many files into or retrieving them from
a remote archive (TAR-format library) file, consult the HTAR Reference Manual (URL: http://
www.llnl.gov/LCdocs/htar) for another LC-designed, locally deployed tool tailored to efficiently
managing large archives in storage or on any preauthenticated FTP server.

Additional Interfaces

GRAPHICAL INTERFACES:
In addition to FTP and NFT, there are also other local tools that use FTP daemons for file transfer to
STORAGE through graphical interfaces. One for workstations is XDIR; one for Macintosh computers is
Fetch. Another visual file-transfer interface called HOPPER is installed on all LC production machines,
open and secure. With HOPPER, you use your mouse to select (CTRL-CLICK) files from displayed
tables, then connect to a target machine using your choice (from a menu) of FTP (no default host) or
NFT (where STORAGE is always the default). A third alternative, "Connect to Storage (HPSS)," opens
an FTP connection directly to your top-level STORAGE directory by default (thus mimicking NFT).
See the HOPPER (URL: http://www.llnl.gov/LCdocs/ezoutput/index.jsp?show=s4.8) section of the
EZOUTPUT guide for concise HOPPER instructions.

ARCHIVE BUILDER:
A different local interface, called HTAR (page 36), has been designed at LC primarily to efficiently
transfer very large archive (TAR-like library) files to and from STORAGE on LC production machines,
or to extract member files from within still-stored archives (you can optionally use HTAR for similar
nonSTORAGE transfers too). HOPPER can also serve as a visual controller for HTAR.

Note:
At LC, currently only STORAGE interfaces based on FTP daemons are supported (such as FTP,
PFTP, NFT, HTAR, XDIR, and Fetch). And despite its name, SFTP relies on the SSHD2 daemon, not
the standard FTP daemon, so you can NOT store or retrieve stored files at LLNL using SFTP as an
interface. However, executing FTP on any LC production machine (but not necessarily on any other LC
machines) is equivalent to executing PFTP (Parallel FTP) by default. Executing the PFTP client overtly
gives you access to numerous special parallel-transfer commands (such as PPUT and PGET). These
extra PFTP commands are unnecessary on LC production machines (where ordinary FTP performs
parallel transfers to and from storage automatically), but if you use STORAGE at other ASC (tri-lab)

http://www.llnl.gov/LCdocs/htar
http://www.llnl.gov/LCdocs/ezoutput/index.jsp?show=s4.8

EZSTORAGE - 9

sites you may need to invoke them. Refer to the documentation available from the HPSS Collaboration
Web site (URL: http://www.hpss-collaboration.org/hpss/administrators/documentation.jsp) for details
about PFTP commands.

EZSTORAGE - 10

Accessing STORAGE

Accessing STORAGE is most easily done from an LC production machine. Offsite users will
encounter difficulties in connecting to STORAGE because of interface limitations as well as intentional
security barriers to easy use.

When onsite, NFT, FTP, and HSI can be used to transfer files to and from STORAGE. The NFT
interface is supported only by LC machines and can only be used to transfer files between them. It is not
possible to use NFT from a machine outside 134.n.n.n (including other llnl.gov machines and all onsite
desktop machines).

Offsite users can only use FTP. However, LC's firewall totally blocks all FTP traffic from every
host outside the llnl.gov domain. To transfer files from machines outside llnl.gov to any LC machine,
outside-the-firewall users have three choices:

(1) Log on to an LC production machine, then execute FTP on that machine and connect back to the
outside machine where the sought files reside, using GET to retrieve them. It also requires an FTP server
(not just a client) running on the outside machine, a problem for some workstations. As a second stage,
you must then run FTP on the llnl.gov machine again to transfer the files to storage.

(2) Run secure copy SCP (described in EZOUTPUT (URL: http://www.llnl.gov/LCdocs/ezoutput))
instead of FTP to transfer files toward an open-network LC machine. You must have previously
installed SSH on the outside machine (LC's firewall allows SSH and SCP traffic from any IPA-
authenticated outside host). Since storage.llnl.gov has no SCP server, however, you must again run FTP
on the LC machine as a second stage to actually transfer your files to storage.

(3) Before you run FTP on your outside-the-firewall machine, get, install, configure, and execute
a Virtual Private Network (VPN) client on that machine. Contact the LC Hotline to see if you are
authorized to run a VPN client for access to LLNL. A VPN client borrows an llnl.gov IP address
for your machine while it runs, and LC has confirmed that if you run VPN and FTP together under
Windows, you can directly transfer files to storage.llnl.gov from outside the firewall (no staging to an
LC production machine is needed). You may encounter vendor-compatibility problems with various
versions of Windows or with other operating systems. See LC's Firewall and SSH Guide (URL: http://
www.llnl.gov/LCdocs/firewall) for full instructions on the fairly complex process of getting and using
VPN to enable FTP. (You cannot use SFTP through VPN to store or retrieve stored files.)

Note also that both the SSH and VPN choices (above) for reaching storage.llnl.gov from external
machines are subject to a general 2-hour timeout. A Web-based reauthentication mechanism is described
in the "Internet" section of EZACCESS (URL: http://www.llnl.gov/LCdocs/ezaccess/index.jsp?
show=s2.2.2).

Detailed instructions for the choices mentioned above, as well as a concise but thorough SSH
overview, including role, annotated setup steps, basic execute lines, and troubleshooting tips, are
available in LC's Firewall and SSH Guide (URL: http://www.llnl.gov/LCdocs/firewall).

http://www.llnl.gov/LCdocs/ezoutput
http://www.llnl.gov/LCdocs/firewall
http://www.llnl.gov/LCdocs/ezaccess/index.jsp?show=s2.2.2
http://www.llnl.gov/LCdocs/firewall

EZSTORAGE - 11

Copies in Storage

Some files may be so important to your project that you want to store separate, duplicate copies
on independent storage media (at LC, this means separate tape cartridges). LC's OCF and SCF storage
systems offer such dual-copy storage using the "class of service" (COS) concept.

The storage server(s) assign to every incoming file a COS based on the file's size and the client that
writes it:

• Files written with FTP or NFT that are smaller than 32 Mbytes are automatically assigned a COS
that provides two separate copies on separate storage tapes. For these files you never need to
request duplicate storage.

• Files written with FTP or NFT that are 32 Mbytes or larger are assigned a COS that stores only a
single copy. For mission critical files in this category you can request dual-copy storage by using
the FTP command

 site setcos dualcopy

or the NFT command

 setcos dualcopy

before you PUT the large file(s) into HPSS. NFT's DIR command (if used with the -h option)
reports the current COS for already stored files (in output column 3).

• Files written with HTAR, regardless of their size, always get a default COS that stores only a
single copy. For mission critical files written with HTAR you can request dual-copy storage by
using the (uppercase) command

 -Y dualcopy

on the HTAR execute line that creates your stored archive (this overrides the HTAR_COS
environment variable).

For more COS technical details, consult the SETCOS section of LC's HPSS Manual (URL: http://
www.llnl.gov/LCdocs/hpss/).

http://www.llnl.gov/LCdocs/hpss/

EZSTORAGE - 12

Using FTP

Basic FTP Commands

FTP is a widely used file-transfer utility because it supports transfers between any machines that
recognize the TCP/IP protocols, even if they have different architectures or operating systems. You
must, however, log in to the remote machine and transfer the files interactively using your (remote)
password. (See FTP Pitfalls (page 16) below for a few known storage problems with FTP.)

Because of the need for fast, reliable file transfers to and from STORAGE (i.e., storage.llnl.gov),
that host uses special FTP servers and other LC machines use special FTP clients that can preauthorize
your FTP login to STORAGE (only), so that no password is requested. All LC production machines
(IBM/AIX and Linux/CHAOS) offer passwordless (preauthenticated) FTP service to STORAGE.
The usage is the same as standard FTP, except for omitting the password request. Note also that on
production LC machines, NFT, which favors the STORAGE system in several ways, also offers
passwordless file transfer to and from STORAGE (see the NFT (page 18) section for details).
Furthermore, on all LC production machines (but not necessarily on other LC machines), a parallel
FTP client (equivalent to PFTP) is now the default. See the FTP Reference Manual (URL: http://
www.llnl.gov/LCdocs/ftp) for instructions on invoking a nondefault nonparallel FTP client, which is
less verbose. Also, you can use HOPPER (page 8) to run FTP to STORAGE graphically.

Most FTP implementations support many commands, but not always the same ones. The standard
FTP commands, with their syntax and error codes, are detailed in the FTP Reference Manual (URL:
http://www.llnl.gov/LCdocs/ftp). The following FTP commands are the most commonly used ones for
basic file transfer:

cd pathname changes directories (on the remote machine) to the one specified by pathname. By
default, FTP GETs files from and PUTs files to the home directory of the remote
machine, so you must change directories with CD if you need to transfer them to or
from somewhere else.

pwd reports the current working directory's pathname on the remote machine (to
confirm uses of CD).

dir lists the names and attributes of files in the current working directory on the remote
machine.

get remotefile [localfile]

retrieves remotefile and places it in the current directory of the local machine
(where you are running FTP). The incoming file is called remotefile by default,
or called localfile if you specify a name. (Use HTAR (page 36) instead if you
want to retrieve a member file from within a still-stored archive.)

mget filelist generalizes the GET command to transfer all the files in filelist, a blank-delimited
list of remote files to retrieve to the current directory (where you are running FTP).
MGET accepts wildcards and prompts for your Y[ES] or N[O] response to each file
name before the corresponding transfer.

http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/ftp

EZSTORAGE - 13

parallel [LLNL only] enables parallel file transfers on LC production machines. But
remember that parallel file transfers are already ON by default to or from
STORAGE for all files over 4 Mbytes (so typing PARALLEL here just reports the
stripe width and block size).

put localfile [remotefile]

copies localfile into the current working directory of the remote machine you have
logged in to with FTP. The outwardly transferred file is called localfile by default,
or called remotefile if you specify a name.

mput filelist generalizes the PUT command to transfer all the files in filelist, a blank-delimited
list of local files to copy to the home directory of the remote machine that you
logged in to with FTP. MPUT accepts wildcards and prompts for your Y[ES] or
N[O] response to each file name before the corresponding transfer.

delete remotefile

removes remotefile from the current working directory of the remote machine you
have logged in to with FTP. Use DIR to confirm your deletion.

mdelete filelist generalizes the DELETE command to remove all the files in filelist, a blank-
delimited list of remote files to delete from the current working directory on the
remote machine. MDELETE accepts wildcards and prompts for your Y[ES] or
N[O] response to each file name before the corresponding deletion. WARNING:
see the known pitfall of using MDELETE with wildcards to delete files from the
LC storage system (subsection below (page 16)).

help [command]

lists the commands supported by the implementation of FTP that you are running,
or (with an argument) briefly describes one command.

quit closes your remote session and terminates FTP.

EZSTORAGE - 14

FTP Example

This annotated example shows a typical file transfer to and from STORAGE using FTP.

GOAL: To transfer files to and from STORAGE interactively using FTP (the default parallel
FTP client). In this case, the local machine on which the user (JANE) executes the FTP
client is ATLAS, and the remote machine that files are saved to and retrieved from is
STORAGE.

STRATEGY: (1) The user runs FTP (on ATLAS) with storage.llnl.gov as the remote machine's
domain name.
(2) Because STORAGE is a special destination, its FTP server preauthenticates JANE
and asks for neither her user name nor her password (most other destinations ask for
both). This dialog is more verbose than that for most FTP sites and automatically
enables parallel file transfers.
(3) At the ftp> prompt, the user GETs file TEST5 (copies it from STORAGE to
ATLAS).
(4) At the next ftp> prompt, the user PUTs file TABLE.DAT (copies it from ATLAS to
STORAGE).
(5) When the file transfers are done and confirmed, the user QUITs FTP.

 (1) ftp storage.llnl.gov
 Connected to toofast54.llnl.gov
 220-NOTICE TO USERS [long legal disclaimer here...]
 220 toofast15 FTP server (HPSS 7.1 PFTPD V1.1.1
 Tue Sep 8 14:06:03 PDT 2009) ready.

 (2) Preauthenticated FTP to toofast54.llnl.gov as jane:
 232 GSSAPI user ... is authorized as jane@spectrum.llnl.gov
 230 User ... logged in as jane@spectrum.llnl.gov
 Remote system type is UNIX.
 Using binary mode to transfer files.

 (3) ftp> get test5
 .
 .
 .
 226 Transfer complete.
 1827811 bytes received in 0.20 seconds (9.10 Mbytes/s)

 (4) ftp> put table.dat
 .
 .
 .
 226 Transfer complete.
 7311244 bytes sent in 1.85 seconds (3.96 Mbytes/s)

 (5) ftp> quit
 221 Goodbye.

EZSTORAGE - 15

EZSTORAGE - 16

FTP Pitfalls (with Storage)

STORAGE MDELETE.
FTP's "M" commands (such as MGET, MPUT, and MDELETE) process multiple files by using as their
argument either an explicit file list or a file filter (an implicit file list specified with one or more UNIX
wildcards or metacharacters, such as ? or *). The UNIX shell where your FTP client runs expands each
file filter (or "ambiguous file reference," such as TEST*) into a list of names for FTP to process.

But how that list is processed depends on the FTP server that receives it. Different servers may
process the expanded filter differently, with different file-transfer results. Thus the same FTP "M"
command may behave differently on different servers. When your valuable stored files are involved, and
when the FTP command is MDELETE (or any file-removal command), the results can sometimes be
very inappropriate.

The diagram below illustrates how problems can arise because the LC storage server treats
MDELETE filters differently than do other FTP servers at LC.

Example of MDELETE filter handling by different LC servers

 Files and directories on server:
 testdir0
 |

 | | | |
 testfile1 testfile2 testdir1 testdir2
 | |
 ----------- --------------
 | | | |
 testfile3 testfile4 testfile5 testfile6

 Handling of MDELETE filter request:

 LC server In TESTDIR0, MDELETE *
 --------- ----------------------------------
 IBM | deletes testfile1 leaves testdir1
 LINUX | testfile2 testdir2
 | testfile3
 | testfile4
 testfile5
 testfile6

 storage deletes testfile1 leaves testdir1
 (HPSS) testfile2 testdir2
 testfile3
 testfile4
 testfile5
 testfile6

Only the server on the LC storage system interprets MDELETE filters recursively and removes all
(matching) files not only in the current working directory but also in the directory children of that
directory as well. (Interestingly, the LC storage server treats only MDELETE so aggressively; MPUT
and MGET still act just within the current directory.) You should always pay attention to this known
pitfall when deleting multiple stored files at LC using FTP as your storage interface.

EZSTORAGE - 17

You can work around this broad interpretation of FTP's MDELETE command by the LC storage
server in several ways:

• Use as your MDELETE argument an explicit list of files instead of a file filter with
metacharacters.

• Use a more restrictive filter (certainly more restrictive than * alone), carefully crafted to select
only the files in the current working directory in storage (if your file-naming scheme allows).

• Use NFT (page 18) instead of FTP as your storage interface. NFT has no MDELETE
command, and its separate storage server interprets DELETE * to remove only files in the current
working directory (not in any child directories). You must invoke the -R suboption explicitly to
make the NFT commands DELETE and RMDIR behave recursively.

CLIENT INTERACTION DIFFERENCES.
Not all available FTP clients interact equally well with HPSS. If you work on LC Linux/CHAOS
clusters, you have access to /usr/kerberos/bin/ftp, but you should always instead run /usr/bin/ftp to store
files. Under some circumstances the former (but not the latter) client refuses to log you into HPSS or
needlessly asks you to "please login with USER and PASS."

EZSTORAGE - 18

Using NFT

NFT Command Syntax

NFT (unlike FTP) was designed for the LC environment and it has two special features that affect
how you can use it.

First, all NFT file transfers involve not only the donor and the receiver machines you specify
(overtly or by default), but also a third invisible machine running locally developed software dedicated
to failure detection and recovery and NFT job tracking. If a problem prevents a file from being sent
or received immediately, the software automatically remembers the request and persists in trying to
complete it later, recording its results for you to verify if needed.

Second, NFT assumes that the remote host in all file transfers is the LC storage system
(storage.llnl.gov) unless you specify otherwise. The existence of such a default remote host means that:
(1) There are two types of NFT commands (one for general file transfers among any hosts that NFT
serves, and one for those that do not accept NFT's usual host-specifying syntax because they default to
storage transfers) and,
(2) The syntax of NFT commands assumes local-to-storage transfers unless you specify otherwise. (You
can use HOPPER (page 8) to run NFT as a controllee, but HOPPER's own "Connect to Storage (HPSS)"
option runs FTP instead even though, like NFT, storage.llnl.gov is its default destination.)

NFT also has many special features that suit it for use in batch jobs and scripts (unlike FTP). The
NFT Reference Manual (URL: http://www.llnl.gov/LCdocs/nft) explains those unusual features,
while its basic commands pertaining to STORAGE are summarized here. Unlike FTP, NFT transfers
involve no long legal preamble and no increased verbosity when connecting to a parallel FTP server
such as STORAGE. Also unlike FTP, NFT automatically "routes" storage-related file transfers to take
advantage of fast, jumbo-frame network connections whenever they are available. If you want to retrieve
a member file from within a still-stored archive, use HTAR (page 36) instead.

Most NFT messages about user errors (as illustrated in the example (URL: http://www.llnl.gov/
LCdocs/ezstorage/index.jsp?show=s4.3) dialog subsection below) are sequentially numbered along with
other NFT responses and begin with the string "error":

 n.0 error explanation

However, if HPSS storage is down for planned servicing, then attempts to store files using NFT yield a
different error message with this special format:

 [SCF|OCF] HPSS Storage is down for maintenance.
 *** Try again later.

Scripts that execute NFT should check for this special "three-star" error message and avoid needlessly
resubmitting NFT jobs (storage requests) once it has been detected.

http://www.llnl.gov/LCdocs/nft
http://www.llnl.gov/LCdocs/ezstorage/index.jsp?show=s4.3

EZSTORAGE - 19

NFT Commands by Task

This chart shows the interactive NFT commands that perform the most common file-transfer tasks.
For a detailed list of every NFT command, see the Command Dictionary (URL: http://www.llnl.gov/
LCdocs/nft/index.jsp?show=s9) in the NFT Reference Manual.

File-Transfer Task NFT Command
GENERAL
Change remote directory to newdir on aaa cd aaa:newdir
Change local directory to newdir cd :newdir
Change storage(*) directory to newdir cd newdir
List remote directory contents on aaa dir aaa:
List local directory contents dir :
List storage(*) directory contents dir
Put (copy) local file t1 to remote host aaa as t2 cp :t1 aaa:t2
Get (copy) remote file t3 from aaa as local file t4 cp aaa:t3 :t4
Transfer file t5 on aaa to file t6 on bbb (both remote) cp aaa:t5 bbb:t6
Delete remote file t3 from storage delete t3
STORAGE DEFAULTED(*)
Store local file t1 put t1
Store local file t1 as t2 put t1 t2
Retrieve from storage file t3 get t3
Retrieve t3 as local file t4 get t3 t4
CONTROL OPTIONS
Prevent all overwriting (default) noclobber
Allow overwriting (for updates) clobber
Start a log of NFT actions log logfile
Close the log file clog
Change storage class of service to nnn setcos nnn
Change default remote host(*) open host
Terminate NFT quit (*)

 (*)You can change NFT's default remote host from storage to something else by using the OPEN
command, but you should consult the OPEN command section (URL: http://www.llnl.gov/LCdocs/nft/
index.jsp?show=s9.28) of the NFT manual before you rely on it.

http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9
http://www.llnl.gov/LCdocs/nft/index.jsp?show=s9.28

EZSTORAGE - 20

NFT Example

This annotated example shows typical file transfers using NFT.

GOAL: To transfer files from a secure LC machine to STORAGE without logging on to all of
the machines, using NFT.

STRATEGY: (1) Start NFT. Notice that unlike FTP, you do not log on to any particular remote host
to "open a connection."
(2) Use storage-defaulted command PUT to transfer file t1 from the client machine
(where NFT runs) to storage.llnl.gov as file t2. Note that NO hosts are specified in this
command because the default location is STORAGE.
(3) Try to retrieve file t2 from STORAGE to local file t1 using the storage-defaulted
GET command. Becaue NFT's default environment is NOCLOBBER, this attempt fails
(t1 already exists). You could use the CLOBBER option next, to allow this overwrite,
or...
(4) Use GET to retrieve t2 from storage with no name change (and hence no
overwriting of t1).

(1) nft
(2) nft>put t1 t2
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes/s) from /g/g0/jfk/t1 to ~/t2
(3) nft>get t2 t1
 5.0. error. Cannot clobber existing sink.
 /g/g0/jfk/t1
(4) nft>get t2
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t2 to /g/g0/jfk/t2
 nft>quit

EZSTORAGE - 21

Using HSI

HSI Command Line

The HSI command line has the following format:

hsi [options] [command [;command [;...]]]

If an optional command-string is specified, then HSI is running in single execute line mode (also
known as "one-liner" mode). In this mode, HSI will execute the command-string and then terminate.
Multiple commands may be specified and separated by the semicolon (;) character. The command line
may need to be enclosed in single or double quotes to protect it from expansion by the shell program
that launches HSI.

You can also use HSI interactively by entering the command HSI without any arguments. Then
simply enter HSI requests in response to the question-mark (?) prompt. Terminate the HSI session with
the END command or one of its several aliases, such as BYE or QUIT.

Single-line execution is often used when HSI is run from within UNIX scripts and pipelines. An
example of using HSI with two commands on the execute line might be:

hsi "cd /users/project1;ls -l *.c"

HSI FTP Compatibility
HSI supports several of the commonly used FTP commands, including DIR, GET, LS, MDELETE,

MGET, PUT, MPUT, and PROMPT, with the following differences:

• The DIR command is an alias for LS in HSI. The LS command supports an extensive set of
options for displaying files, including wildcard pattern-matching and the ability to recursively list
a directory tree.

• The PUT and GET family of commands support recursion.

• There are "conditional" put and get commands (CPUT, CGET).

• The syntax for renaming local files when storing files to HPSS or retrieving files from HPSS is
different than FTP. With HSI, the syntax is always local_file : hpps_file, and multiple such pairs
may be specified on a single command line. With FTP, the local filename is specified first on
a PUT command, and second on a GET command. For example, when using HSI to store the
local file "file1" as HPSS file "hpss_file1" and then retrieve it back to the local file system as
"file1.bak", the following commands could be used:

put file1 hpss_file

get file1.bak : hpss_file1

With FTP, the following commands could be used:

put file1 hpss_file1

get hpss_file1 file1.bak

EZSTORAGE - 22

• The "m" prefix is not needed for HSI commands; all commands that work with files accept
multiple files on the command line. The "m" series of commands are intended to provide a
measure of compatibility for FTP users.

EZSTORAGE - 23

HSI Examples

Save a "tar file" of C source programs and header files:

tar cf - *.[ch] | hsi put - : source.tar

Note: the ":" operator that separates the local and HPSS path names must be surrounded by white
space (one or more space characters)

Restore the tar file source saved above and extract all files:

hsi get - : source.tar | tar xf -

Get all files in the subdirectory subdira that begin with the letters "b" or "c" (surrounding the
wildcard path in single quotes prevents shells on UNIX systems from processing the wildcard pattern):

hsi get ’subdira/[bc]*’

Save your local files that begin with the letter "c" (let the UNIX shell resolve the wildcard path
pattern in terms of your local files by not enclosing it in quotes):

hsi put c*

Delete all files beginning with "m" and ending with 9101 (note that this is an interactive request, not
a one-liner request, so the wildcard path does not need quotes to preserve it):

hsi <RETURN>
 ? delete m*9101

Interactively delete all files beginning with H and ending with a digit, and ask for verification before
deleting each such file.

hsi <RETURN>
 ? mdel H*[0-9]

Interactively descend into the "Source" directory and move all files that end in ".h" into a sibling
directory (i.e., a directory at the same level in the tree as "Source") named "Include":

hsi <RETURN>
 ? cd Source
 ? mv *.h ../Include

Additional Resources
For more information about HSI, see the HSI User Manual (URL: http://www.llnl.gov/LCdocs/hsi).

http://www.llnl.gov/LCdocs/hsi

EZSTORAGE - 24

Sharing Stored Files

Sharing some stored files with one or several other users is one of the most common storage
goals. You may also want to consider using other file-sharing techniques available on LC production
machines. Consult the "File-Sharing Alternatives Compared" section of EZFILES (URL: http://
www.llnl.gov/LCdocs/ezfiles) for an overt analysis of several choices.

All sharing of stored files on LC's HPSS system happens by means of storage groups. You and those
with whom you want to share stored files must first find or create an LDAP (Lightweight Directory
Access Protocol) storage group to which you all belong, you must assign the files to be shared and
every parent directory of them to that common storage group, and you must open the file and directory
permissions (of the whole tree) to allow group reads (executes, or writes).

The (sample) users, groups, directories, and files diagrammed here will be used to illustrate the file-
sharing steps described in the subsections below:

 | user1 user2 user3 |
 |--------------------------sgroup--|
 CHGRP/CHMOD
 .
 .
 /users/u34/jfk..................
 /share............
 /share.in...
 share.out..
 share.code.

These subsections address in turn the typical file-sharing goals of identifying your groups, changing
stored-file group permissions, and later reading shared stored files.

Using Storage Groups

A group is just a named set of users that agree among themselves to optionally allow (some of their)
files to be readable, or even writable, by all group members. At LC, online groups (e.g., on either an
AIX or Linux cluster) are obtained from LDAP. For most LC users, your online and storage groups
will have the same name, and those groups will have the same sets of members online and in HPSS.
However, a file loses its group status at the time you store it, so you must arrange the sharing of stored
files by working exclusively with groups. For basic information about using groups, see the EZFILES
section titled "Using Groups." (URL: http://www.llnl.gov/LCdocs/ezfiles/index.jsp?show=s9)

http://www.llnl.gov/LCdocs/ezfiles
http://www.llnl.gov/LCdocs/ezfiles/index.jsp?show=s9

EZSTORAGE - 25

Setting Stored-File Permissions by Group

Once you have the files you want to share and the name of a group to whom all sharing users
belong (see the previous subsection), you can follow these steps, all involving (somewhat unusual) FTP
commands, to enable the sharing of stored files:

(1) Open an FTP session to STORAGE.
All file-sharing arrangements require passing group and permission information to the storage system
using the indirect mechanism that FTP provides for such nonstandard activity.

 ftp storage

(2) Create a storage directory to hold the shared files.
In this example, the shared-files directory is called share and the shared file is called share.code (see
also the figure at the start of the file-sharing section), but these can obviously be generalized as you
need. In your FTP session type

 mkdir share

(3) Assign your storage home directory to the share group.
If your default arrival directory in storage is /users/u34/jfk and if the storage group containing all the
file-sharing users is sgroup, then use this indirect FTP command

 quote site chgrp sgroup /users/u34/jfk

to associate the two. One side effect is that you cannot share with two different groups at once. (You can
also change storage groups for any of these steps by using the special CHGRPSTG (page 33) tool,
described in a later section.)

(4) Assign your file-sharing directory to the share group.
Because you made the share directory as a child of /users/u34/jfk in step (2), you can now associate it
too with the file-sharing storage group sgroup:

 quote site chgrp sgroup share

(5) Assign group permisssions to the file-sharing directory.
To allow other members of storage group sgroup to read, write, and execute (list) the file(s) in the share
directory, use this indirect FTP command

 quote site chmod 775 share

to expand its default group permissions. (You can also change storage permissions for any of these steps
by using the special CHMODSTG (page 30) tool, described in a later section.)

EZSTORAGE - 26

(6) Store the files to be shared.
If you move (CD) to the file-sharing directory and PUT the file(s) to be shared, they will lose their
online permissions but they will arrive associated with the share group sgroup, which they inherit from
the file-sharing directory:

 cd share
 put share.code
 [more puts if there are more files to share]

(7) Assign group permissions to the file(s) to be shared.
Even if their online permissions allowed sharing by group, storing the file(s) erased those decisions. So
as with step (5) above, you need to declare the availablity of each file to the members of sgroup:

 quote site chmod 775 share.code

Reading Shared Stored Files

After you have used the previous two subsections to enable others in storage group sgroup to share
the file(s) in the share directory, they can follow these steps to retrieve those file(s):

 ftp storage
 cd /users/u34/jfk/share
 get share.code

Note that impatient attempts to directly GET file /users/u34/jfk/share.code (while in another storage
directory) may misleadingly fail with the message "no such file or directory."

EZSTORAGE - 27

Storage Assistance Tools

LC's production machines offer three public user-developed programs to handle three common
storage tasks more conveniently than is possible with FTP or NFT. In fact, these storage assistance tools
perform some helpful tasks (such as recursive changes on stored files) not possible with FTP (NFT
offers a suboption, -R, that you can invoke to recursively change stored files).

These special storage tools and their roles are:

lstorage lists your storage directories and stored files in any of several formats, recursively
if you request.

chmodstg changes the UNIX permissions on your storage directories or your stored files,
recursively and symbolically if you request.

chgrpstg changes the (storage) group for your storage directories or your stored files (to
enable file sharing), recursively if you request.

All are located in /usr/local/bin on the machines where they they have been installed (so most users
can run them just by typing their names).

WARNING: Because all three storage-assistance tools are really Perl scripts, they yield very verbose
and confusing error messages if you happen to run them when the LC storage system (either open or
secure) is offline for maintenance.

In addition, LC provides a special-purpose front-end to parallel FTP that is customized to very
efficiently store and retrieve large archive (TAR-format library) files. This combination file bundler and
fast STORAGE interface is called HTAR. A short subsection below introduces HTAR's features and
syntax, while LC's separate HTAR Reference Manual (URL: http://www.llnl.gov/LCdocs/htar) gives a
thorough analysis of both good usage and known pitfalls. HTAR also offers the unique ability to retrieve
a member file from within a still-stored archive, even without staging the archive from tape to disk in
HPSS.

HTAR users may also benefit from familiarity with the HSI utility, which provides a user-friendly
UNIX-style interface to HPSS, with a number of features, such as the ability to recursively store,
retrieve and list entire trees with a single command. Additional HSI and HTAR information is available
at http://www.mgleicher.us (URL: http://www.mgleicher.us).

http://www.llnl.gov/LCdocs/htar

EZSTORAGE - 28

LSTORAGE (List Stored Files)

EXECUTE LINE.
LSTORAGE lists your storage directories and the files that they contain. To run LSTORAGE on the LC
production machines where it is installed, type

lstorage [options] [dirnames]

By choice of LSTORAGE options you can specify output format (single or multiple colunms), output
scope (local or recursive), and level of detail (names only or other information too). The basic pattern
for using LSTORAGE options is:

 Recursive Nonrecursive

 |
 Single | -lR, -j -l
 column |
 |
 Multiple | -R default,
 column | -C

Because LSTORAGE runs noninteractively, redirecting its output to a file for later reuse is easy (e.g.,
lstorage > outfile).

DEFAULTS.
Without a specified directory, LSTORAGE reports on your top-level ("home") storage directory.
Without options, LSTORAGE lists (only) the names of files and directories contained in the specified
storage directory, in multiple columns. If you specify a space-delimited list of several target storage
directories (all names relative to your home storage directory), LSTORAGE reports on each one in the
order in which you listed them on the execute line.

SPECIAL BENEFITS.
LSTORAGE takes the place of using FTP's DIR or LS options. Unlike FTP, LSTORAGE avoids the
long warning message, can make recursive reports, is easy to redirect, and can report on several storage
directories at once.

TYPICAL USES.

lstorage -lR > storage.list

places into the file storage.list a detailed, recursive report on all of your storage
directories and stored files (and their properties), starting with your "home" storage
directory and working down the tree.

lstorage -j project2/admin

lists the names (only) of your storage directories, subdirectories, and stored files
starting with the project2/admin directory and continuing recursively downward
through the tree. The list is a single column indented at every new level to reveal
nesting.

EZSTORAGE - 29

OPTIONS.

Scope options:

-a lists all directories and files, including those whose names begin with a dot(.).
NOTE: on the one hand, listing stored files such as .cshrc is default behavior for
LSTORAGE even without invoking -a; on the other hand, even with -a invoked the
list still omits the single and double dot (. and ..) entries that FTP's DIR reports.

-l lists in long format, with details on the permissions and groups for every storage
directory or stored file covered in the report.

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line (compare with -j).

Format options:

-C (default) lists storage directories and stored files in multiple columns with entries
sorted down the columns.

-j lists storage directories and stored files recursively (entails -R) in a single column
with nesting revealed by extra indenting (names only).

-h displays the LSTORAGE help package (a brief list of options). Help cannot be
combined with any other options.

-t sss sets the LSTORAGE timeout to sss seconds (default timeout is 300 seconds).

EZSTORAGE - 30

CHMODSTG (Change Storage Permissions)

EXECUTE LINE.
CHMODSTG changes the permissions on your storage directories or your stored files. To run
CHMODSTG on the LC production machines where it is installed, type

chmodstg [options] [dirname]

By choice of CHMODSTG options you can specify the desired permissions for a specific storage
directory, a specific stored file, all files in a directory, or (recursively) all children of a specific directory
to all levels. You can also specify uninterrupted, noninteractive changes or instead request interactive
prompting for your desired permissions and files (with optional report on each change made). The basic
pattern for using CHMODSTG options is (all except -s can be combined with -R for recursive scope):

 Prompts No prompt
 | For perms | For perms |
 | only | and files |

 | | |
No | default, | -i | -F perm -D perm
reports | -f, -d, -s | |
 | | |
Report | -v or | -v or
results | lstorage -l | lstorage -l

DEFAULTS.
Without a specified directory, CHMODSTG acts on your top-level ("home") storage directory. Without
permission-related options (e.g., chmodstg -R dir1), CHMODSTG prompts for your desired directory
and file permissions and then changes both with no confirmation.

SPECIAL BENEFITS.
CHMODSTG takes the place of using FTP's QUOTE SITE CHMOD indirect command. Unlike FTP,
CHMODSTG avoids the long warning message, can make recursive changes, and accepts symbolic
rather than only octal permissions.

TYPICAL INTERACTIVE USES.

chmodstg -R project2/admin

announces that CHMODSTG will act recursively starting from the specified
directory, prompts for your desired permissions on storage directories, prompts
(separately) for your desired permissions on stored files, then changes the
permissions without confirmation.

chmodstg -iR project2/admin

same as above (for -R), but also prompts for your yes/no choice for each directory
and file processed.

EZSTORAGE - 31

chmodstg -ivR project2/admin

same as above (for -iR), but also reports the specific change made for every file
(e.g., "changed from 750 to 700") as it occurs.

TYPICAL NONINTERACTIVE USES.

chmodstg -D775 project2/admin

assigns permission 775 to all subdirectories of the specified storage directory (use -
s to change that directory itself), without prompting or confirmation.

chmodstg -D750 -F650 -R project2/admin

starts at the specified directory and recursively assigns 750 to every subdirectory
and 650 to every stored file encountered as it works down the tree, without
prompting or confirmation.

SPECIFYING PERMISSIONS:
CHMODSTG accepts permissions as either three-digit octal numbers (exactly three digits, no spaces)
or as a comma-delimited list of symbolic triples (e.g., u+x,g-w) built up from the UNIX components
[augo], [+-], and [rwx]. (FTP accepts only the octal format.) Users unfamilar with either style of
specifying permissions can read a concise, overtly diagrammed summary of both in the "How to Specify
Permissions" section of the EZFILES (URL: http://www.llnl.gov/LCdocs/ezfiles) basic guide.

OPTIONS.
Permission options:

-Fperm specifies (in either octal or symbolic format) the UNIX permissions perm to assign
to every stored file (but not directories) that CHMODSTG treats during this run, as
selected by other options. This disarms the file-permissions prompt.

-Dperm specifies (in either octal or symbolic format) the UNIX permissions perm to assign
to every storage directory (but not stored files) that CHMODSTG treats during this
run, as selected by other options. This disarms the directory-permissions prompt.

Scope options:

-f changes file permissions only (omits directories). CHMODSTG prompts you for
the desired permissions. The default without -f or -d is to change both.

-d changes directory permissions only (omits files). CHMODSTG prompts you for the
desired permissions. The default without -f or -d is to change both.

-s pathname changes permissions only for the one directory or file specified by its pathname
(relative to your home storage directory). Using -s disables all other CHMODSTG
options except -v, so CHMODSTG always prompts for your desired permissions
even if you include -F or -D on the execute line.

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line. You can combine -R with other options (except -s) to
further control CHMODSTG's scope of action.

http://www.llnl.gov/LCdocs/ezfiles

EZSTORAGE - 32

Interaction options:

-i prompts for your yes/no confirmation for every directory or stored file that
CHMODSTG tries to change (regardless of whether you also want prompting for
desired permissions). Any response except YES is treated as NO; you can NOT
supply different permissions for different files by using -i.

-v interactively reports the permission change made for every directory or stored file
that CHMODSTG changes (e.g., "changed from 650 to 700"). You can combine -
v with CHMODSTG's various prompting options, or use it for confirmations even
without prompts.

-s is a scope option (see above) but always behaves interactively, even if you try to
disable its prompts.

-h displays the CHMODSTG help package (a brief list of options). Help cannot be
combined with any other options.

EZSTORAGE - 33

CHGRPSTG (Change Storage Groups)

EXECUTE LINE.
CHGRPSTG changes the group for your storage directories or your stored files. To run CHGRPSTG on
the LC production machines where it is installed, type

chgrpstg [options] groupname [dirname]

There is no prompt or default for the desired groupname, which you must specify on every CHGRPSTG
execute line. To discover your current groups, type the GROUPS command on LC production machine.

Most CHGRPSTG invocations run noninteractively, but you can request prompting or confirmatory
reports, alone or together with recursive execution, by following this pattern of options:

 Recursive Nonrecursive

 Prompts and | -ivR | -iv
 reports | |
 | |
 No prompts | -R | default
 or reports | |

DEFAULTS.
Without a specified directory, CHGRPSTG acts on your top-level ("home") storage directory. Without
options, CHGRPSTG changes the group for one "layer" in your storage hierarchy (for every member
of a specified directory but not the directory itself nor the children of its subdirectories). See the
comparative example below.

SPECIAL BENEFITS.
CHGRPSTG takes the place of using FTP's QUOTE SITE CHGRP indirect command. Unlike FTP,
CHGRPSTG avoids the long warning message, can make recursive changes, and can (optionally) treat
just files or just directories at any level in your storage hierarchy.

TYPICAL INTERACTIVE USES.

chgrpstg -ivR newgrp project2/admin

announces that CHGRPSTG will act recursively starting from the specified
directory, prompts for your yes/no choice for each directory and file processed,
and reports the specific change made for every file (e.g., "changed from oldgrp to
newgrp") as it occurs.

EZSTORAGE - 34

TYPICAL NONINTERACTIVE USES.

chgrpstg -s newgrp project2/admin

(change exactly one directory) changes the storage group only for the single
directory specified. Note the different syntax from CHMODSTG (group name
precedes pathname).

chgrpstg newgrp project2/admin

(change one "layer," the default) changes the storage group for all files and
directories within the specified directory, but not for that directory itself nor for any
children of its subdirectories.

chgrpstg -R newgrp project2/admin

(change all layers) changes the storage group for all files and directories within the
specified directory, and also for all of its children working recursively down your
storage hierarchy.

OPTIONS.

Scope options:

-f changes file groups only (omits directories). The default without -f or -d is to
change both.

-d changes directory groups only (omits files). The default without -f or -d is to
change both.

-s groupname pathname

changes groups only for the one directory or file specified by its pathname (relative
to your home storage directory). Using -s disables all other CHGRPSTG options
except -v. Note the syntax difference from CHMODSTG: here, the group name
precedes the pathname immediately after -s.

-R recursively includes all the children (subdirectories and stored files) of the directory
specified on the execute line. You can combine -R with other options (except -s) to
further control CHGRPSTG's scope of action.

Interaction options:

-i prompts for your yes/no confirmation for every directory or stored file that
CHGRPSTG tries to change. Any response except YES is treated as NO; you can
NOT supply different groups for different files by using -i.

-v interactively reports the group change made for every directory or stored file that
CHGRPSTG changes (e.g., "changed from oldgrp to newgrp"). You can combine
-v with CHGRPSTG's -i prompting option, or use it for confirmation reports even
without prompts.

EZSTORAGE - 35

-h displays the CHGRPSTG help package (a brief list of options). Help cannot be
combined with any other options.

EZSTORAGE - 36

HTAR (Manage Stored File Collections)

ROLE.
On LC production machines (but not at other ASC sites), HTAR is a separate, locally developed
utility program that serves as a special-purpose front end to the parallel FTP daemons for storage
access. HTAR combines a flexible file bundling tool (like TAR) with fast parallel access (it acts as an
alternative to the PFTP client) to open and secure STORAGE, to let you store and selectively retrieve
even very large sets of files very efficiently. (Invoking HTAR's -F option lets you generalize these
features for fast, file-bundled transfer to non-STORAGE locations as well.)

FEATURES.
HTAR's enhanced features include:

• Imposes no limit on the total size of the archives that it builds (some have successfully reached
200 Gbyte and 1,000,000 member files) and accepts input files (archive members) as large as
68 Gbyte.

• Uses a TAR-like syntax and supports TAR-compatible archive files by relying on the POSIX
1003.1 TAR file format.

• Bundles files in memory using multiple concurrent threads and transfers them into an archive file
built directly in storage by default, to avoid needing extra local online disk space.

• Takes advantage of available parallel interfaces to storage to provide fast file transfers (measured
at as high as 150 Mbyte/s, over 30 times the typical rate for transferring small files separately).

• Uses an external index file to easily accommodate thousands of small files in any archive, and
to support retrieval of specified files from within a still-stored archive without first retrieving
the whole archive from HPSS. (WARNING: you can use filters such as * to create an HTAR
archive but you CANNOT reliably use filters to retrieve files from within an already stored
HTAR archive. See the "Retrieving Files" section of the HTAR Reference Manual (URL: http://
www.llnl.gov/LCdocs/htar/index.jsp?show=s4.2) for possible workarounds.)

• Allows easily building and storing incremental archives (consisting of only recently changed
files).

EXECUTE LINES.
When the storage system (HPSS) is up and available to users you can execute HTAR with a command
line that has the general form

htar action archive [options] [filelist]

and the specific form

htar -c|t|x|X|K -f archive [-BdEFhHILmMoOpSTvVwY] [flist]

where exactly one action and the archive are always required, while the control options and (except
when using -c) the filelist can be omitted (and the options can share a hyphen flag with the action for
convenience). Users familiar with TAR can guess how to run HTAR from this model (although there

http://www.llnl.gov/LCdocs/htar/index.jsp?show=s4.2

EZSTORAGE - 37

are some tricky syntax differences). Others should consult the HTAR Reference Manual (URL: http://
www.llnl.gov/LCdocs/htar) for usage suggestions, annotated examples, technical tips, full option details,
and known problems.

One unusual feature of HTAR lets you not only avoid retrieving an entire archive from storage
before extracting specified member files from within it, but also lets you (optionally) avoid even staging
tape-resident archive files to HPSS disk before extracting specified members directly to your local
machine. The NOSTAGE suboption of HTAR's -H (uppercase) control option lets you quickly retrieve
(small) files from within a (much larger) stored-on-tape archive file, while leaving the archive on tape.
For example, to retrieve file TEST5 from within the archive MYPROJ.TAR, stored in the PROJECTS
subdirectory of your HPSS home directory, while leaving the whole archive still stored on tape, you
could use

htar -x -f projects/myproj.tar -H nostage test5

HOPPER FRONT END.
You can use LC's visual file-transfer tool (controller), called HOPPER, to run HTAR as a controllee
if you wish (it allows CTRL-CLICK file selection). But to do so you must copy all of your target files
to HOPPER's CLIPBOARD, since "Make HTAR Archive" is only available as an operation (submenu
choice) on clipboard entries. See the HOPPER section of the HTAR manual (URL: http://www.llnl.gov/
LCdocs/htar/index.jsp?show=s2.5) for the details. To list the contents of an existing HTAR archive
(same operation as -t with HTAR), find the archive in a HOPPER directory table and double click on its
icon (note that unlike HTAR itself, HOPPER never includes the archive's checksum file in its contents
report). To extract from an existing HTAR archive, copy the desired files to the CLIPBOARD.

http://www.llnl.gov/LCdocs/htar
http://www.llnl.gov/LCdocs/htar/index.jsp?show=s2.5

EZSTORAGE - 38

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,

LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

EZSTORAGE - 39

Keyword Index

To see an alphabetical list of keywords for this document, consult the next section (page 40).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in EZSTORAGE.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of EZSTORAGE.

overview LC storage strengths and weaknesses.
 storage-summary Storage system constraints and common commands.
 storage-interfaces Descriptions of STORAGE access pathways.
 ftp-overview Brief description of FTP interface.
 nft-overview Brief description of NFT interface.
 additional-interfaces Alternative interface options.
 accessing-storage Offsite access strategies compared.
 storage-copies Multiple copies of same stored file.

ftp Using FTP to transfer files.
file-transfer-protocol Using FTP to transfer files.
 ftp-commands Basic FTP options explained.
 ftp-example Sample file transfer with FTP.
 ftp-pitfalls Wildcard dangers with stored files.

hsi Using the Hierarchical Storage Interface.
 using-hsi Tool to list stored files.
 how-to-run-hsi How to run HSI.
 hsi-ftp-compatibility HSI FTP Compatibility
 hsi-examples HSI Examples

nft Using NFT to transfer files.
network-file-transfer Using NFT to transfer files.
 nft-syntax Specifying sec. levs, hosts with NFT.
 nft-commands Basic NFT options by task.
 nft-example Sample file transfer with NFT.

sharing-files Sharing stored files.
file-sharing Sharing stored files.
 storage-groups Using storage groups.
 permissions Setting permissions by storage group.
 reading-shared-files Sharing by the reader.

storage-tools Three LC storage-helper tools.
 lstorage Tool to list stored files.
 chmodstg Tool to change storage permissions.
 chgrpstg Tool to change storage groups.
 htar Tool to bundle files into storage archives.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

EZSTORAGE - 40

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
accessing-storage Offsite access strategies compared.
additional-interfaces Alternative interface options.
availability Where these programs run.
chgrpstg Tool to change storage groups.
chmodstg Tool to change storage permissions.
date The latest changes to EZSTORAGE.
entire This entire document.
file-sharing Sharing stored files.
file-transfer-protocol Using FTP to transfer files.
ftp Using FTP to transfer files.
ftp-commands Basic FTP options explained.
ftp-example Sample file transfer with FTP.
ftp-overview Brief description of FTP interface.
ftp-pitfalls Wildcard dangers with stored files.
how-to-run-hsi How to run HSI.
hsi Using the Hierarchical Storage Interface.
hsi-examples HSI Examples
hsi-ftp-compatibility HSI FTP Compatibility
htar Tool to bundle files into storage archives.
index The structural index of keywords.
introduction Role and goals of EZSTORAGE.
lstorage Tool to list stored files.
network-file-transfer Using NFT to transfer files.
nft Using NFT to transfer files.
nft-commands Basic NFT options by task.
nft-example Sample file transfer with NFT.
nft-overview Brief description of NFT interface.
nft-syntax Specifying sec. levs, hosts with NFT.
overview LC storage strengths and weaknesses.
permissions Setting permissions by storage group.
reading-shared-files Sharing by the reader.
revisions The complete revision history.
scope Topics covered in EZSTORAGE.
sharing-files Sharing stored files.
storage-copies Multiple copies of same stored file.
storage-groups Using storage groups.
storage-interfaces Descriptions of STORAGE access pathways.
storage-summary Storage system constraints and common commands.
storage-tools Three LC storage-helper tools.
title The name of this document.
using-hsi Tool to list stored files.
who Who to contact for assistance.

EZSTORAGE - 41

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
24Sep09 introduction removed NETMON references.
 ftp-commands removed NETMON references.
 storage-groups removed LDAP references.
 chgrpstg removed LDAP references.

01Mar09 hsi Using the Hierarchical Storage Interface.
 using-hsi Tool to list stored files.
 how-to-run-hsi How to run HSI.
 hsi-ftp-compatibility
 HSI FTP Compatibility
 hsi-examples HSI Examples
 macintosh-problems
 Deprecated and removed from document.
 file-format Deprecated and removed from document.
 file-name-problems
 Deprecated and removed from document
 suntar Deprecated and removed from document.

12Sep07 storage-summary
 HTAR member limit now 68 Gbyte.
 storage-tools Obsolete machines deleted.
 htar HTAR member limit now 68 Gbyte.

23Apr07 storage-summary
 NFT SETCOS command added.
 nft-overview NFT storage "routing" noted.
 storage-copies NFT SETCOS command added.
 ftp-example Udpated, ATLAS replaces GPS.
 nft-syntax NFT storage "routing" noted.
 nft-commands NFT SETCOS command added.

01Nov06 sharing-files Improved subdivision for clarity.
 storage-groups LDAPSEARCH replaces DCECP tool,
 pitfalls and execution details revealed.
 chgrpstg Cross ref to LDAPSEARCH added.

12Jul06 ftp-overview Warning about different FTP clients.
 ftp-commands Pitfalls cross ref added.
 ftp-pitfalls Warning about different FTP clients.
 storage-groups Few machines now support DCECP.

10Apr06 storage-summary
 Changed storage homes for LANL, Sandia users.
 nft-overview LANL, Sandia users can now run NFT.

12Dec05 htar Limitations with HOPPER noted.
 additional-interfaces
 Cross ref to HOPPER details added.

13Jul05 accessing-storage
 Time limit dropped to 2 hr.
 htar New features added.

EZSTORAGE - 42

 additional-interfaces
 HOPPER's storage role summarized.

06Dec04 accessing-storage
 12-hour timeout noted; cross ref.

19Oct04 storage-summary
 NFT ACL commands deleted.
 nft-overview NFT ACL commands discontinued.
 nft-syntax NFT ACL commands discontinued.
 nft-commands ACL commands deleted from table.

15Sep04 introduction HTAR role clarified.
 overview HTAR parallel transfers clarified.
 htar Options and limits updated.

07Jun04 nft-syntax HPSS error message format noted.
 a Sorting error fixed in index.

17Feb04 storage-summary
 COS and ACL commands added.
 ftp-pitfalls Recursive NFT deletes now enabled.
 nft-syntax Five new ACL commands noted.
 nft-commands Five ACL commands added to table.
 nft-example Dialog updated, details added.

18Nov03 htar Speed and size details updated.
 storage-summary
 Maximum file size updated.

11Aug03 storage-summary
 Cross ref. to HTAR added.
 ftp-commands Cross ref. to HTAR added.
 nft-syntax Cross ref. to HTAR added.
 htar NOSTAGE feature explained, illustrated.

12May03 introduction NETMON units user controlled now.
 ftp-commands PARALLEL has altered role.
 storage-tools Now under Linux/CHAOS too.

19Feb03 introduction SFTP is not a storage interface.
 overview SFTP is not a storage interface.
 additional-interfaces
 SFTP is not a storage interface.

21Nov02 introduction FTP monitored by class of service now.
 ftp-commands FTP monitored by class of service now.
 storage-copies Another role for COS noted.

08Oct02 storage-tools Forest departs, availability clarified.

17Jun02 ftp-pitfalls New section with MDELETE warning.
 ftp-commands DELETE, MDELETE added.
 nft-commands DELETE added.
 storage-copies New section on duplicate copies.
 storage-summary
 Maximum file size FTP vs. HTAR.
 index New keywords for new sections.

EZSTORAGE - 43

02May02 htar Warning added on HTAR retrievals.

05Feb02 introduction NETMON cross reference added.
 ftp-commands NETMON cross reference added.
 ftp-example Example dialog updated.
 storage-tools Not available under Linux.
 storage-groups WEST reference replaced.

27Aug01 overview HTAR role added.
 scope HTAR availability noted.
 storage-tools HTAR role added.
 htar New summary section added.
 index New keyword for new section.

09Jul01 overview PFTP role added.
 storage-interfaces
 Automatic parallel FTP to storage.
 PFTP for storing files elsewhere.
 ftp-commands PARALLEL local command added.
 ftp-example Automatic parallel transfers shown.

17Apr01 overview VPN role noted for offsite FTP.
 accessing-storage
 Three strategies revised re VPN, IPA.
 macintosh-problems
 VPN role noted for offsite FTP.

26Mar01 ftp-overview Parallel client now the default.
 ftp-commands Parallel client now the default.
 ftp-example Verbose, preauthenticated parallel dialog.
 nft-syntax No verbosity change for NFT.

25Sep00 sharing-files Link to file-sharing comparison added.

01Aug00 storage-tools Now on all LC production machines.

22May00 storage-tools LSTORAGE, CHMODSTG, CHGRPSTG explained.
 introduction New sections cross referenced.
 sharing-files Relevant new tools cited.
 index New keywords for new sections.

11Apr00 availability Revised print-file instructions.
 overview FTP gateway discontinued.
 accessing-storage
 FTP gateway discontinued.

10Jan00 entire Revised first edition of LC EZSTORAGE.

13Dec99 entire Draft edition of LC EZSTORAGE manual.

ANG (24Sep09)

EZSTORAGE - 44

UCRL-WEB-200719
Privacy and Legal Notice (URL: https://lc.llnl.gov/disclaimer.html)
ANG (24Sep09) Contact: lc-hotline@llnl.gov

https://lc.llnl.gov/disclaimer.html

